Turbulence model reduction by deep learning
نویسندگان
چکیده
منابع مشابه
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملImproving Stock Return Forecasting by Deep Learning Algorithm
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...
متن کاملHashing by Deep Learning
During the past decade (since around 2006), Deep Learning [7], also known as Deep Neural Networks, has drawn increasing attention and research efforts in a variety of artificial intelligence areas including speech recognition, computer vision, machine learning, text mining, etc. Since one main purpose of deep learning is to learn robust and powerful feature representations for complex data, it ...
متن کاملDeep Learning by Scattering
We introduce general scattering transforms as mathematical models of deep neural networks with l pooling. Scattering networks iteratively apply complex valued unitary operators, and the pooling is performed by a complex modulus. An expected scattering defines a contractive representation of a high-dimensional probability distribution, which preserves its mean-square norm. We show that unsupervi...
متن کاملReynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning
Deep learning (DL)-based Reynolds stress with its capability to leverage values of large data can be used to close Reynolds-averaged Navier-Stoke (RANS) equations. Type I and Type II machine learning (ML) frameworks are studied to investigate data and flow feature requirements while training DL-based Reynolds stress. The paper presents a method, flow features coverage mapping (FFCM), to quantif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2020
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.101.061201